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Abstract

The infinite, locally finite distance-transitive graphs form an extension of homogeneous trees
and are described by two discrete parameters. The associated orthogonal polynomials may be
regarded as spherical functions of certain Gelfand pairs or as characters of some polynomial
hypergroups; they are certain Bernstein polynomials and admit a discrete nonnegative product
formula. In this paper we use the graph-theoretic origin of these polynomials to derive the
existence of positive dual continuous product and transfer formulas. The dual product
formulas will be computed explicitly.
© 2002 Elsevier Science (USA). All rights reserved.

1. Infinite distance-transitive graphs and orthogonal polynomials
1.1. Infinite distance-transitive graphs and the associated hypergroups

Let I' be the vertex set of a infinite, locally finite, connected undirected graph,
which carries the usual metric d. Assume in addition that I' is distance-transitive
which means that for all vy, vy,v3,v4€l’ with d(vy,v3) = d(vs,v4) there exists an
automorphism g of I satisfying ¢g(v;) = v3 and g(v) = v4. The graphs of this type
were classified by MacPherson [Mp]. To describe these graphs, we fix integers a,b>2
and denote the complete graph with b vertices by Cp; completeness here means that
all vertices of Cj are connected. The graph I'(a, b) is now defined as the infinite graph
such that precisely a copies of the graph Cj are tacked together at each vertex in a
tree-like way, i.e., there are no other cycles in I'(a, b) than those in a single copy of
Cp. Obviously, I'(a,b) is an infinite, locally finite, distance-transitive graph, and
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I'(a,b) is a homogeneous tree precisely for b = 2. By [Mp], all infinite, locally finite
distance-transitive graphs appear in this way. Several aspects of harmonic analysis
and probability theory on homogeneous trees and related groups were studied by
many authors; see [Cr,CKS,Le,Sa]. It is therefore astonishing that the I'(«, b) did not
attract much attention from this point of view. On the other hand, the orthogonal
polynomials associated with the I'(a,b) have a long history; see [AW,RV,St], and
references therein. We mention that the polynomials in this paper appear in [St] as
limits of finite orthogonal polynomials associated with generalized n-gons.

We now fix integers a,b>2 and equip the group Aut(I') of all automorphisms of
I' .= I'(a,b) with the topology of pointwise convergence. Then Aut(I') is a totally
disconnected, locally compact group. Let G be a closed subgroup of Aut(I') that still
acts on [' in a distance-transitive way. The stabilizer H — G of any fixed vertex ee I is
then a compact open subgroup of G. As G acts transitively on I', we may identify the
discrete spaces G/H and I'. The same will be done with the orbit space I''! ==
{H(v):vel'} and the double coset space G//H = {HgH : g G}. Moreover, as I is
infinite and distance-transitive, we may identify G//H ~I'" with the set Ny of all
nonnegative integers by identifying the orbit H(v) with d(v,e)eNy. If wye M'(G)
denotes the normalized Haar measure of H, the space

My(G||H) = {ne My(G) :og*xuxoy = u}

of all H-biinvariant bounded signed measures on G is a Banach-x-subalgebra of
My(G) with the convolution as product and the total variation norm as norm.
M(G||H) is isometrically isomorphic with the space M,(G//H)~ M;(Ny) of all
bounded signed measures on G//H ~N. Via this isomorphism, M;(N) receives a
canonical Banach-#-algebra structure with a convolution which admits almost all
properties of a group convolution and which is probability preserving. More
precisely, (No, =) is a discrete hypergroup in the sense of C.F. Dunkl, R. Jewett, and
R. Spector; for details see the monograph [BH]. The convolution on M;(Ng) was
computed explicitly in [V1] by counting vertices on I" and is determined uniquely as
the bilinear, weakly continuous extension of the convolution of point measures with

m-+n

5111*5n: Z gm,nﬁkékeMl(NO) (11)

k=|m—n|

for m,ne N, with

a—1 1
>07 Imn,|m—n| = mvn—1 mvn >
ala—1) (b—-1)

Imnm+n = )

b—2
mvn—k—1 mvn—k =0
ala—1) b-1)

Imn,\m—n|+2k+1 =

fork=0,....man—1,and, finally, for k=0,....man—2,
a—?2
a(a _ 1)mvn—k—](b _ l)mvn—k—

gm,n.\mfn|+2k+2 = I >0.
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The Haar measure on the hypergroup (N, *) is the image of the counting measure
on I' under the canonical projection p : I'— I''' ~Nj; counting (see [V1]) thus shows
that the Haar weights are given by

R =1, B = a(a—1"""b-1)" (n=1). (1.2)

Using

Ca—1 _ b-=2 __ 1
Inln+1 = a Inln = Cl(b — 1)7 Inin-1= a(b — 1)

we now define a sequence of orthogonal polynomials (PS,“’b))n20 by

(a,b) (a,b) 2 Ja—1 b—2
P —=1. P N

0 , PU(x) p b—1x+a(b—1)
and the three-term-recurrence relation

1 b-2

ab a,b a—1 a,b
PP = P b G P R ez ()
By induction we then obtain
m+n
punpen = 5 g P (i nz0) (1.4
k=m—n

Notice that the choice of Pﬁa’b) above is in principle arbitrary. Our choice is

motivated by the fact that precisely in this case the Pﬁ,a’b) are orthogonal with respect
to a measure with support [—1, 1] except for possible singular points; see below. We
also notice that for all indices a, b€ R with a, b =2, the formulas above remain correct
and Eq.(1.1) defines a commutative polynomial hypergroup K@* on Nj. We
therefore assume from now on that ¢,beR with a,b>2 holds. For details on
polynomial hypergroups we refer to [BH,La].

1.2. The orthogonal polynomials
We next discuss some properties of the P,(f’b). The simple three-term-recurrence
(1.3) allows to compute the P,(f’b) explicitly. In fact, for ze C\{0, + 1} we obtain

plad) <Z + zl) _ c(z)z" +c(z7")z™ (1.5)
AN ((a=1)b-1)"
with
() = (@a—Dz—z"+(b=2)(a—1)"BH-1)"> 16)
' a(z—z71) ' '
We note that in particular for
2—a-— —a-— 2
(ah) _ a-b _ (ab) _ _ab—a—b+ (17)

So=So =5 (a—1)(b-1) Ty (@-1)b-1)
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we have
P(s)) =1, P(so)=(1-b)" (n=0). (1.8)
A comparison of (1.5) with the Tchebychev polynomials
U,(cost) = M
sin ¢

of the second kind now leads to
a—1

a((a—1)(b—1))"?

b—-2 1
’ (U”(x) lam oo TaT U“(x)>

for xeC (with U_; = U_, = 0). The P,(,”’h) thus fit into the Askey—Wilson scheme
(see [AW, pp. 26-28]) and are sometimes called Bernstein or Cartier polynomials.
The orthogonality relations in [AW] imply that the normalized orthogonality
measure p = p(@?) e M'(R) is

dp(a’b)(x) — W(mb)(x) dx|[_1,1] for a=b>=2 (1.9)

P (x) =

and
b—a

dp'®) (x) = W) (x) dl _y y + = doy, for b>a>2 (1.10)

with
a (1 —x)1?
27 (s — x)(x — sp)

For a,beR with a,b>2, the numbers s, s; satisfy

wiab) (x) :

—s1<so< — 1<1<sy.
Moreover, Eq. (1.5) yields that the dual space
K@ ~{xeR: (P (x)),, is bounded}

of K@ is equal to [—sy,s;]. This interval obviously contains the support S ==
supp p'%?) of the orthogonality measure.

1.1. Remark. For p>1 denote the space of L’-functions on Ny w.r.t. the Haar
measure with weights (1.2) by L”(Ng). (1.2) and (1.8) show that for b>a, the
character o on K@ corresponding to syesupp p satisfies ae L?(Ny) precisely for
p>1+In(a+ 1)/In(bh + 1); in particular, for b>a, we have a.e L2(Ny).

In the sequel we investigate dual convolutions on S and K@) For integers a,b>2,
the existence of a dual probability preserving convolution on S follows from general
(hyper)group-theoretic principles; see Theorem 2.4(2) of [V2] or Section 13 of [J].

Such a argument is not available for characters in K“?\S and clearly also not for
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arbitrary a,beR, a,b>=2. On the other hand, the existence of a dual probability
preserving convolution on K@ was established for 5 = 2 and aeN with a>2 (i.e.,
in the case of homogeneous trees) by Arnaud [A] and Letac [Le] by using positive
definite functions on trees. Moreover, for » = 2 and a€ R with ¢>2, it was shown in
[CKS,Le] that there exists a dual positive convolution on K(*? = [—s, /], which is
computed explicitly there. We now extend these results of [A,CKS,Le] to the case
b>=2. We first restrict our attention to a,beN and the infinite distance-transitive
graphs.

2. Existence of positive product and transfer formulas

Let a,beN with a,b>2, and let I' = I'(a,b) be the associated infinite distance-
transitive graph. In the following we sometimes suppress the superscript (a,b).
We first investigate which hypergroup characters belong to positive definite
functions on the graph. For this we prove the following extension of a result
of [A].

2.1. Proposition. Let b>=2 be an integer, ae R with a=2, and I a finite graph formed
by N copies of the complete graph Cy in a tree-like way. Then, for all xeC,

2V (g — x)N(b71>(x -0
a j—

(a,b) _
det(Py( p(X))ser = ab-DN+1(y — 1YV

)N
I)Nb/z H (a - U(S))7

sel’
where v(s) denotes the number of copies of the graph Cp to which se I belongs.

The proof is based on some known facts about determinants; we include proofs
for sake of completeness. Denote the n x m-matrix with all entries equal to 1 by E,, ,,.
Moreover, for ¢,deC, let M,(c,d) be the n x n-matrix with the entry ¢ in the
diagonal and d otherwise.

2.2. Lemma. Let ¢,d,eeC and m,neN.

(1) det My(c,d) = (¢ —d)" ' (¢ + (n— 1)d).
(2) The mn x mn-block matrix

M,(c,d) e-E,, e-E,, .. e-E,

e-E,, Mycd) e E,, .. e-E,.,
Gum(c,d,e) = ’ ’ ’

e-E,, e-E,, e E,, .. Mcd)
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satisfies

det Gypm(c,d,e) =(c —d)"" V(c+ (n—1)d — ne)™!
x (¢4 (n—1)d +n(m—1)e).

(3) If c>d, det Gy ,—1(c,d,e)>0, and det G, ,,,(c,d,e)>0, then for [ =1, ... n, the
block matrices

G C,d,e e'Enm—
Gumi(c,d,e) ::( m1( ) ( 1),1)

e El,n(mfl) Ml(cv d)
also satisfy det Gy, (c,d,e)>0.

Proof. (1) Subtract the first n — 1 rows d/((n — 2)d + ¢)-times from the last one of
M,(c,d). This yields

det My(c,d) = det M, (c,d) (C - %)

Induction now leads to part (1).

(2) Subtract the first (m — 1)n rows (OS]

G,Lm(c,d e) Then the matrix consisting of the last n rows is given by
(0,0, ...,0, M, (¢,d)) with ¢ == ¢ — h, d = d — h, and

h e(m—1)n
T e4(n—1)d+ (m—2)ne

Therefore,

det G, (c,d,e) = det Gy _i(c,d, e) det M, (¢, 07)

-times from the last n rows of

The claim now follows by induction from part (1).
(3) The proof of part (2) also implies that

det Gy i(c,d,e) = det Gy —i(c,d, e) det M;(C, J)

with
5 _ [(m — 1)ne?
S PSRy A B .
det Mi(¢,d) = (c—d)" |c+ (- 1)d T =t m—2me|’
As the [...]-term is positive for / = 0 and / = n by the assumption and linear in /, the

claim follows. O

Proof of Proposition 2.1. We check the determinant formula by induction on the
number of copies of the graph C, which form the graph I'. We also use the notations

of the preceding lemma and suppress the superscripts and the argument in PS,“'M (x).
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If I consists of one copy of Cp, then (Py(s)); e = Mp(1, P1), and Lemma 2.2(1)
implies

det(Py(s ))g ey = (1= P17 (1 + (b= 1)Py), (2.1)

which readily proves the claim for N = 1.

Now assume that the determinant formula is correct for some graph I' formed by
a certain positive finite number of copies of the graph C,. Now consider some vertex
keI which belongs to only one subgraph of I" isomorphic with Cp (note that such a
vertex exists!). Denote its neighbors by ki, ..., k, ;. We now extend I" at k by r>0
new copies of the graph Cj, in a tree-like way, and obtain a new graph, say I". The
new vertices will be labelled by N; with 1<i<r, 1<j<b—1,1.e., Nj’ is the jth vertex
of the ith new graph isomorphic with C,. The matrix H = (Pd(SJ))s,ref then may be
written as H = (H,, H,) with

* R Pitks) - Ejrj-p.1
* My (1, P(x)) P -Ey
* Py Eyp 1

H =] = Py Ep 151 Pi-Ey_1,

* Py Ep_1p1 Py -Ey_1,

* Py Ep -1 Pi-Ey 1

and where H, is given by

Patksy+1 - Eirj—pp-1 oo Pagesyrr - Erj—pp-1
Py Ep 151 Py - Ep 15
Pi-Eyp Py Eipy
My (1,P)) Py-Ep 151 .. Py Ey_ 15
Py-Ep i My (1,P1) ... Py Epyp-i
Py Ep 15 Py Ep_1p1 ... My (1, Py)

Here = denotes parts of no interest, and all rows of the matrix R contain the entry
Pyis) exactly b — 2-times and the entry Py 41 once; here as well as in the matrices
above, s stands for some vertex in I with d(k,s)>2.

Now subtract the column belonging to the vertex k in the H (i.e., the third column
of H or H,) from each of the last r(b — 1) columns of H (and H,, respectively)
exactly —%; Pi-times and add the columns belonging to the vertices ki, ..., k, 1 (i.€.,
the columns in the second column of H;) to these columns exactly m-times.

The three-term-recurrence (1.3) for the P, ensures that the entries of the modified
columns belonging to rows seI'\{k} are equal to 0. Moreover, the entries of the
modified columns belonging to row k also disappear. Using the remaining entries in



344 M. Voit | Journal of Approximation Theory 120 (2003) 337-354

the modified columns, we conclude that
det(Pd(&,t)) F= del(Pd(é;t))s,reF deZ(Gb,]A’r(C, d, 6’)) (2.2)

s,te

with Gjy_;,(c,d,e) as in Lemma 2.2 and

1
Py——L P d=c+P -1, e=c+P—1
a—1 a—1

Therefore, by Lemma 2.2(2),
det(Gy-1 (¢, d,e) = (1= P) "2 ((b=2)(P = 1) = (b= 1)(P, = 1))
X(b=Dre+b=-2)(P1—1)+B-1)F—-1)(P—1)).

A straightforward computation now shows that

c=1+

l—Plzi\/Z__}(Sl—x),
L (p—np = 2@ZDOZD (0

a
b=y -1)—-(b-1H(Pr—-1)= g (51— x)(x — 50)
and
b-—Dre+b-2)(Pi =1+ B-1)(Fr—-1)(P,—1)
_4ab—a—b+2)(a—r—1)
ala—1)
These formulas, Eq. (2.2) and induction on the number of vertices belonging to at
least two copies of the complete graph C, now imply
2V (s — )V (x — 5)V (@ — V2
DN (p— VO () ) E (a = v(s)).

(51 — x)(x — s0).

det(Pys))srer =
The proposition now follows from )., v(s) =bN. O

Proposition 2.1 can be used to decide which characters on the hypergroup

No~TI'(a,b)" may be regarded as a positive definite kernel on I'(a, b) or as a positive
definite function on the group G of automorphisms on I'(a, b). For this we recall that
akernel k: I'(a,b) x I'(a,b)— C is called positive definite if for all neN, ¢y, ..., ¢, €C
and vy, ...,v,eI” we have

n
Z C,‘Ejk(v,‘, Uj) =0.
ij—=1
Proposition 2.1 yields:

2.3. Theorem. Let a,b>=?2 integers, and let G be a locally compact group acting on
I'(a,b) in a distance-transitive way. Denote the stabilizer subgroup of a fixed vertex by
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H and identify G//H with Ny in the obvious way. Then the following statements are
equivalent for x,de R with a=2:

(1) Either xe [s(()d’b),sgd’h)] and d=a or xe {s(()d’b)7 sgd’m} and a=2;

(2) (v1,v2) HPEI‘?’:)UZ)(X) is a positive definite kernel on I'(a,b);

(3) the mapping g»—»PEla;:I){‘e) (x) is a positive definite function on G.

Proof. Using the identification G/H =T, we find for all vertices vj,v,el’
representatives ¢, g, € G with v; = g;H, and we have

d(gy'g2H,e) = d(g2H,g1(e)) = d(g2H, g1 H).

This observation readily implies equivalence (2) < (3).

In order to check (1) = (2), we first consider xe]sf)”’b), s\"P] and @>a. Take finitely
many arbitrary vertices in I'(a,b), and let T be some finite connected subgraph of
I'(a,b) consisting of graphs of type C, and containing these vertices. Enumerate the
elements of 7 by sy, ...,s, such that for each keNy with b+ k(b — 1)<m, the

vertices sy, ..., Sp4x(p—1) form a connected subgraph T} consisting of graphs of type
Cp. Then, by Proposition 2.1, det(PE;zf:Lj)(x))
Moreover, Eq. (2.2) in the proof of Proposition 2.1 and Lemma 2.2(3) imply that

ij=1,.. pek(p—1) >0 for all these k.

ib
det(PSY) (%));jc1 >0 (2.3)
for all r=1,...,m. This implies part (2) for xe]sé‘i’m,s(ld’b)[ and d>a. The case
X€ [sf)d’b), s(ld’h)} and @>a now follows by taking limits. Moreover, as P (s(lﬁ’b)) and

P,(f"b) (s(()d’b)) are independent of @ by (1.8), part (2) also holds for x = s(()d’b), sgd’b) and
any a=2.

Now take @>2 and xeR such that the kernel in (2) is positive definite. This in
particular implies that |P£,d’b)(x)|<1 for all n=0, i.e., we obtain xe[—sgd’w,s({i’b)].

Moreover, the case x<s(()d‘b) can be obviously excluded by using Proposition 2.1 for

N =1. For xe]s(d’b),s(ld’b)[, the case d<a can be also excluded by Proposition 2.1.

This completes the proof. O

2.4. Remark. For @ = a, Theorem 2.3 may be regarded as a discrete analog of well-
known results on positive definite functions on the noncompact symmetric spaces of
rank one and the associated Jacobi functions; see [FK, p. 265].

Theorem 2.3, the fact that products of positive definite functions on G are again
positive definite, the fact that H-biinvariant positive definite functions on G may be
regarded as positive definite functions on the hypergroup Ny, and the Bochner
theorem on commutative hypergroups (see [J]) now lead to the following result:
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2.5. Corollary. Let a,b=2 be integers and x, ye[s(()“’b),sga’b)]. Then there exists a

unique probability measure p, € M' ([—si“?), siP))

with
S(la.b)

P (x) - P (y) = / o PAD(2) iy (2) - for all neNo.
s

The following result follows by the same reasons:

2.6. Corollary. Let a,b=2 be integers and deR with d=a. Then for each
X€ [s(()a’b),s(la'm} there exists a unique probability measure u, e M 1([fs5a’b), s(la’b)]) with
” X(]a,b) ,
P (x) = o PYb)(2) du(z) for all neNy.
e
For b = 2, the measures p, , and u, above were computed explicitly by Letac [Le];

he even observed that in fact both types of measures exist for all real 4>a>2 with
b = 2. In the next section we extend the product formula of [Le] to the case b>2, beR.

3. The explicit product formula

Let a,beR with a,b>=2. As the trivial case ¢ =b =2 (which leads to the
Tchebychev polynomials of the first kind) has to be treated separately, we assume
from now on a + b>4. We now use the Joukowski transform z+— x(z) = (z +z7')/2

whose inverse transform is given by x+>zi(x) =x+Vvx*—1 where the two
numbers z4 (x) satisfy z_(x) - z;(x) = 1. In the following, it will be convenient to
work both with the x- and the z-variables; we agree that from now on Xx; always
corresponds to z; (ie N) where in all formulas the choice of z; or z; ! does not matter
by symmetry. As a preparation for the kernel appearing in the product formula, we
need the following result which extends Proposition 2.1 of [CKS]; see also [RV]:

3.1. Lemma. Let zy,z,,z3€ C\{0} satisfying one of the following two conditions:

(1) |27 2325 </ (a—=1)(b—1) for all &1, ¢e,63 = £1,
(2) zz=—Va—1/Vvb—1and |}z |<b —1 for all & ,e = +1.

Then for x; = (z; +z;1)/2 (i = 1,2, 3), the series

o0
S H P (50 P )P ) 3
n=0

converges and is equal to

K@) (x1, x2,x3)

. R(a,b)(xl,XZ,XB)H?ZI (@b—a—b+2—2/(a—1)(b-1)x;) 52)
a(a—1)(b =T, pees1(V(@a—1)(b—1) — 27 2225)
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with

3
R(a’b>(X1,X2,X3 Hab—a—b+2+2 (a—l)(b—l)Xj)

i=1

+(b—2)<ab—a—b—|—2+2\/(a—1)(b—1) i:x,)
i=1

x (a*—a—1+(b—1)(—a’ +4d* —4a+1)

3
oo ).

Proof. Assume first that z;# + 1 for all ;. In this case, (1.5) and (1.7) show that (3.1)
may be written as a sum of eight (or four) geometric sums which converge under the
assumptions of the lemma. In particular, the expression in (3.1) is equal to

€1 €2 €3

a Z c(zy)e(25)e(25) - 27 25 25

(CZ o 1) £1,60,63==+1 (a - 1)(b - 1) - Z?IZ?Z;}

(3.3)

The equality of the expressions in (3.3) and (3.2) finally follows by a tedious, but
straightforward computation (which was verified by the author also by using
MAPLE).

Assume now that z; = +1 and z,z3# +1, and that zy, z, z3 satisfy one of the
conditions of the lemma. Then for any zeC with |z| =1 and z# +1, the lemma
holds for (z,z;,z2). As for given z,z3, the eight geometric series above converge
uniformly in ze T\{ +1}, and as the partial sums as well as the right-hand side of
(3.2) are continuous in zeT, it follows readily that the lemma also holds for
(+1,z1,23). The remaining cases follow in the same way. [

3.2. Lemma. The function K\“?) defined in Lemma 3.1 satisfies

K@) (), x5, x3) =0

for all xy,x2€ sy, s1] and x3€supp p'“?) for which K\“?) is nonsingular.

Proof. We first note that Eq. (3.2) yields
K(a’b) (so,xl,xz)

2 =
_ (a— 1)b(b - z)Hi:I((l - Z.\/(afll)(bq))(l }l_:\/(afl)(ml))). (3.4)

2 22
Cl(b—l) H61£2 +1(1+b 7)

In particular, K@) (sg,x1,x2)=0 holds for xj,x;€[so,s1]. It therefore suffices to
check that K@) (xy,x3,x3)=0 for xi,x2€[s0,51] and x3e[—1,1]. As x3e[—1,1] is
equivalent to z3eC with |z3] = 1, it follows readily that the numerator of (3.2) is
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nonnegative for xj,x;€[so,s1] and x3e[—1,1]. We therefore have to prove that
R(“’b)(xl,xz,X3)>0 for xi,x2€[s0,51], x3€[—1,1]. (3.5)
This is obvious for b = 2, but the proof is more involved for 5>2. All computations

below were checked by hand and in addition by using MAPLE. We assume b>2
from now on and write

a=q¢+1, b=r*+1 with g>1, r>1.
The function R is a polynomial in x; of degree 2 with a positive leading coefficient. A

short computation shows that the minimum of R depending on x; is attained at

—1
Xim = xlm(x27x3) :4(]37’(}" — 1)(}’+ l)

X (2qr(q2 + 1)(612;’2 — D +x3)+ 4q2r2(q2 — 1)xax3

_qZ +q4r2 _q2r2 +q4r4 —}"2 +V4C[2 _ q4_|_q6 }’2).

Inspection shows that xy,, is linear in x, with a negative leading coefficient for all
X3 €80, 51]. By symmetry, we conclude that xj,, as a function of xz, x3€][so,s1], is
decreasing in these variables. We now discuss three cases depending on the location
of x1,,:

Case 1: x1,,<so: As K("’b)(so,xz,X3)>0 by the considerations above, (3.5) is
obvious in this case.

Case 2: x1,, = 5;: In this case it suffices to check R(sy,x2,x3) >0 for x;, x3 € [so, 51]
with  x1,,(x2,x3)=s,. By symmetry, this means to prove R(xj,xz,s1)=0 for
X1,X2€[S0,81] with xp,(x1,x2)>=s1. As the equation xiy,(x,s;) =sp admits the
unique solution

oo @+ D@+ 2477 -2 - — 1)
- dar(g T — 1)

and as a straightforward computation yields x* <sq, we conclude that for x; s, 51]
we have x; >x*, and hence, by monotonicity, Xy, (x2, 1) <sp. It therefore suffices to
check R(so, x2,s1)=>0 which is a consequence Case 1. This completes the proof of
(3.5) in this case.

Case 3: x1,,€[s0,51]: In this case we have to prove

R(X1m(x2,X3), X2, x3) =0

for certain x,,x3. To describe the set of all these points, we notice that the linear
equation xi,,(s0,Xx3) = so has the unique solution

o 4 )
ot 1)

It can be easily checked that X3€[0,s] for ¢,r>=1. As x,>s9, we obtain from the
monotonicity of xj, that we may restrict our attention to xz€l[so,s;] and
x3€[—1,min{1, ¥3}]. To check R(x1,,(x2,x3), X2, x3) >0 in this case, we observe that
R(x1m(x2,x3), X2, X3) is quadratic in x;. A straightforward computation shows that
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the extreme value of this function (depending on Xx3) is attained at

- (¢ + 1)(¢*r* = 1)(¢* +2grx; + 1)
2qr(2¢3rx; — 2qrxs — 1 — 3¢% + 3¢%12 + q4r2).

X2e ()C3) =

On the other hand, the unique solution of the equation xj,,(x2,x3) = 5o in X is given
by
2x3(°r + ¢ — ¢ — qr)

LR P PR P — P

2gr(—q* + ¢*r* — 1 4+ ¢*r* + 2¢°rx3 — 2qrx3)

XQ,,(X3) = =

Hence, x2,(x3) — x2.(x3) is given by
243 = 1)’ (Pq + ¢* — x3r — g*rxs)
-2+ ¢*r? — 1 + ¢*r2 + 2¢3rx3 — 2qrxs3
1
% =3¢+ ¢*r? — 1+ 3¢%2 + 2¢°rx3 — 2qrx3’

It can be readily checked that the denominator of this expression is positive for
Xx3=59. Moreover, its numerator is nonnegative iff x3 <x3 holds. Furthermore, as
_ (P = D)(r?q+ ¢ —rxs — ¢*rx3)

(23 rxy — 2qrx; — 1 — 3¢% 4+ 3¢ + ¢*r?)

X2¢(X3) — So
can be handled in the same way, we conclude that xy,(x3)=>x2.(x3)>s0 for
X3 € [0, X3], and that we have to prove

R(x3) = R(x1m(x2¢(x3), X3), X20(x3), x3) =0
for x3e[—1, min{l, X3}]. A straightforward computation shows that

5o (¢° = D0 = 1)Z(xs)
ROS) = 2l — 1 =1 =3¢ = 3¢7 + 7 6

with
Z(x3) =8¢ x3 + 4(—¢°r* + ¢*r* — ¢t + ¢ — ¢ — ¢ h)x3
F (<2477 — 4P — 24°r)x3 + 10g° + 45 — aghrt 4 g0
— 27 + 4g8* — 4g° + 1 + 4t = 24°7 + 4¢P + o

A further straightforward computation now yields that the cubic polynomial Z with
positive leading coefficient has two local extrema on R where the local minimum is
attained at

|
M= (g + ¢+ g — ¢+ 4+ 44
6q°r
+ (14247 +2¢* = 2477 + 12¢°% — 2¢5* + ¢*r* — 24°

+2q8}’4 +2q10r4 +q8 _ 2q10r2 +q12}’4)1/2).
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A straightforward computation shows that m>1 holds for ¢,r>1, i.e., the local
minimum m is on the right-hand side of the interval [—1,1]. As R(so)=>0 by the
considerations above, and as Z(1) = (¢°> — r)*(¢*? — 1)*>0 and hence R(1)>0, we
conclude that R=0 on [—1, 1]. This completes the proof. [

3.3. Remark. Fora =2 or b =2, we have 5yp = —sy, i.e., Lemma 3.2 implies that the
kernel K@?) is nonnegative on K x K@) x supp p (except for possible poles). On
the other hand, for a,h>2 it may occur for certain points x; € [—sy, o[ < K@O\supp p
and x,x3€[—1, 1]csupp p that K@) (x|, x5, x3) <0 holds. Hence, by the arguments
in the proof of Theorem 3.4 below, there exists usually no dual positive convolution
on the complete dual space K*?) = [—s;,s,]. Here is a concrete example: for a = 5
and b=17 we have —s;=—65/16, so=—5/4, and K©®'7(x,0,0)<0 for
xe[—s1,—5/2[#0.

Motivated by Corollary 2.5, we now construct an explicit product formula for the
polynomials P,, = fff’b) on [so,s] for all a,beR with a,h>2 and a + b>4.

3.4. Theorem. Let z;,z0e C\{0} and x; = (z; + z; ') /2 for i = 1,2. Then for all me N,
the following product formulas hold.

(D) If |2} 25| <\/(a—=1)(b—1) for all &\,&, = t1, then

P (x1)Pm(x2) = / P, (x)K(x1,x2,x) dp(x).

supp p

(2) If z1,22€R with

212> V/(a = D)(b = D) >max{|z; 'zl |21 ] |27 'z '}

then
z+ z1
Py(xi)  Pu(x2)=A4-Pp| ——— —|—/ P, (x) - K(x1,x2,x)dp(x)
2 supp p
with
o an o, da)ez)
(a—1)(b—-1) c(z)

(3) Let z1,z0€ R with |z1],|z2|> 1. If either zizy = \/(a — 1)(b—1), or if a#b and
21z = —y/(a — 1)(b = 1), then the product formula of part (1) also holds.

(4) For all x;€C, Py (s1) - Pp(x1) = Pp(x1).

(5) If a>b =2, then P,(—s1) - Pp(x1) = Pu(—x1) for all x,€C.

(6) If b>a =2, then sy = —s; and for P,(—s1) - Pyu(x1) the product formula of part
(1) holds.
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In particular, for all x,yel[so,s1] there exists a unique probability measure
1., € M ([s0,51]) with

Ppu(x) - Pu(y) = /S1 P(z)dp,,(z)  for all meNy.

S0

Proof. We first check that cases (1)—(6) cover all possible product formulas for
X,y €lso,s1]. In fact, the only possibilities not covered by the main cases (1) and (2)
are the cases

2122] = V{@a=1)(b=1), z1=%(a=1)(b-1)
or
=+ (a=1)b-1).

Ifz1,z0# ++/(a — 1)(b — 1), then we automatically land up with case (3) (notice that
for a = b we have s) = —1, i.e., for x|, x2€[s0,51] the case zjz; = —/(a— 1)(b— 1) is
automatically excluded). Assume now that z; = ++/(a — 1)(b — 1) with z, €T holds
(notice that the last case z, = ++/(a — 1)(b — 1) can be handled in the same way).
Then the case with a plus sign is case (4), and as —s; = sy holds precisely for a = 2 or
b =2, the relevant cases of a minus sign are covered by (5) and (6). The
nonnegativity of the product formulas now follows immediately from the
nonnegativity of K in the relevant regions; see Lemma 3.2. The fact that
the measures there are probabilities finally follows from Py = 1.

We next check the product formulas. Cases (4) and (5) are clear; we just notice that
for b =2 we have P, (—x) = (=1)"P,(x).

To prove part (1), we first notice that the isolated point sy in supp p appears
precisely for b>a>2, and that in this case b — 1 >/(a — 1)(b — 1) holds, i.e., series
(3.1) converges for z3 .= vVa—1/vb—1 and all z;, z, satisfying the conditions of
part (1). We therefore obtain from the proof of Lemma 3.1 that in the setting of part
(1) series (3.1) converges uniformly for z3 =x+Vx2—1 with xesupp p'@h).
Multiplication of this series with Pl (x), integration w.r.t. p@? and the
orthogonality of the Pﬁ,”’m (x) now yield the product formula.

Part (6) follows by the same arguments.

We next consider part (3). In this case the definition of the Lebesgue density w
and Eq. (3.2) show that

W(a"b) (X) . K(u’b) ()El s fz, X)

(a,b)

is a continuous function in the variables (X, X,,x) for xe[—1,1] and (£,X;) in a
neighborhood of (xj,x;). Therefore, as the arguments for the isolated point in
so € supp p“?) above for b>a remain available, and as the product formula was

already proved for (X),%;) whose z-values satisfy |£153]<+/(a—1)(b—1), the
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dominated convergence theorem ensures that the product formula of part (1) also
holds for the x|, x, that belong to zy, z; satisfying the conditions of part (3).

It remains to check part (2). According to the proof of Lemma 3.1, we have

c(z2})e(z3)e(25) - 2y 2525

a=1, 5= S Db D) -5

e1,6,e3=11

whenever the z; satisfy z{'z5' 25 #/(a — 1)(b — 1) for all &;,¢,63 = +1. For meN
let

K(x1,x2,x3) =

1
I = /_ Pon(x) - K(x1, 30, x) dp (). (3.7)

1

Using the representation

a—1 1
w(x) =
™) =" le(x+ivVIT=x2) - (1 = x2)/2

of the weight function, we see that

L, =p([-1, Omo + Z o(25)2)' 23
e,eo==1
2n it
x Al,j/ P (COS’) a1, (3.8)
2n)o ((a—1)(b—1)—z{z5e)c(e )
where the expressions [...] are equal to
1
mo._ Rm
Hiv, 2ni Jip=r (1) b
with
vw!
R (V(a—=1)(b—=1)—=z{"zZw)e(wT)

- (c(w)w’” +e(w Hm ’”) 1
c(w™!) (Vla=D 1) - 5w ((a— 1)(b—1)""*
These integrals over the unit circle will be evaluated by using the residue theorem.
The integrand Ry}, has the following relevant singularities and residues:

(a) For m>=1, we have the pole 0 with residue
(Zfil Zgz )m—l
((@a=1)(b-1)"
Summation over ¢,& = +1 as in Eq. (3.8) with the coefficients there shows that

the pole 0 for m>1 leads to a summand P,,(x;) Py, (x2) in L.
(b) A second pole of R is given by

wier, &) =/ (a—1)(b—1)/(z]'z3).

Resy(RI ) =

£1,62
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Under the conditions of part (2), this pole is inside the unit circle precisely for
g1 = & = I; the residue is given in this case by
Po((w(er,e2) +wier,e)')/2)
zlzzc(w(al,sz)_l) '
Therefore, this pole leads to the summand —AP,,((z +z7!)/2) (with 4 and z as

in part (2) of the theorem).
(¢) A further pole appears for w satisfying ¢(w™!) = 0. This holds precisely for

Res\v(sl,So)(Rm ) = -

€1,62

w=+/(a—1)(b—1), which is outside the unit circle, and for wy:=

(a—1)/(b—1), which is outside the unit circle for ¢>b and inside for
a<b (the case a = b will be considered in the end of the proof). In the first case
we have no contribution. Assume now that a<b holds. In this case a
straightforward computation shows that

a(b — a) (=1)"(4=h)m=272
bla—1) b—1-=z'z2

Therefore, this pole leads to the summand

RESWO(Rm ) =

£1,862

oy 2)e(z5)= 25 (1) (=)™ "
e +1ba—l b—1—z'z
of I,,. Moreover, a comparison with (3.3) and a straightforward computation
show
b—

A= 2 K Palen) ().

Summarizing, we obtain from (a)—(c) that part (2) of the theorem holds for h#a and
for z, z, with

Va—10b-0)/(2) % —/la=1)/(b-1)

in which case the simple poles in (b) and (c) are equal and a double pole appears.
This latter case can be again settled by considering small perturbations of z;,z, and
then using the already known results together with the dominated convergence
theorem applied to the integral in Eq. (3.7). The same argument also settles the case
a = b by considering a<b with a— b. This completes the proof of the theorem. [
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