
http://www.elsevier.com/locate/jat

Journal of Approximation Theory 120 (2003) 337–354

A product formula for orthogonal polynomials
associated with infinite distance-transitive graphs

Michael Voit

Fachbereich Mathematik, Universität Dortmund, D-44221 Dortmund, Germany

Received 17 January 2002; accepted 30 October 2002

Abstract

The infinite, locally finite distance-transitive graphs form an extension of homogeneous trees

and are described by two discrete parameters. The associated orthogonal polynomials may be

regarded as spherical functions of certain Gelfand pairs or as characters of some polynomial

hypergroups; they are certain Bernstein polynomials and admit a discrete nonnegative product

formula. In this paper we use the graph-theoretic origin of these polynomials to derive the

existence of positive dual continuous product and transfer formulas. The dual product

formulas will be computed explicitly.

r 2002 Elsevier Science (USA). All rights reserved.

1. Infinite distance-transitive graphs and orthogonal polynomials

1.1. Infinite distance-transitive graphs and the associated hypergroups

Let G be the vertex set of a infinite, locally finite, connected undirected graph,
which carries the usual metric d: Assume in addition that G is distance-transitive
which means that for all v1; v2; v3; v4AG with dðv1; v3Þ ¼ dðv3; v4Þ there exists an
automorphism g of G satisfying gðv1Þ ¼ v3 and gðv2Þ ¼ v4: The graphs of this type
were classified by MacPherson [Mp]. To describe these graphs, we fix integers a; bX2
and denote the complete graph with b vertices by Cb; completeness here means that
all vertices of Cb are connected. The graph Gða; bÞ is now defined as the infinite graph
such that precisely a copies of the graph Cb are tacked together at each vertex in a
tree-like way, i.e., there are no other cycles in Gða; bÞ than those in a single copy of
Cb: Obviously, Gða; bÞ is an infinite, locally finite, distance-transitive graph, and
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Gða; bÞ is a homogeneous tree precisely for b ¼ 2: By [Mp], all infinite, locally finite
distance-transitive graphs appear in this way. Several aspects of harmonic analysis
and probability theory on homogeneous trees and related groups were studied by
many authors; see [Cr,CKS,Le,Sa]. It is therefore astonishing that the Gða; bÞ did not
attract much attention from this point of view. On the other hand, the orthogonal
polynomials associated with the Gða; bÞ have a long history; see [AW,RV,St], and
references therein. We mention that the polynomials in this paper appear in [St] as
limits of finite orthogonal polynomials associated with generalized n-gons.

We now fix integers a; bX2 and equip the group AutðGÞ of all automorphisms of
G :¼ Gða; bÞ with the topology of pointwise convergence. Then AutðGÞ is a totally
disconnected, locally compact group. Let G be a closed subgroup of AutðGÞ that still
acts on G in a distance-transitive way. The stabilizer HCG of any fixed vertex eAG is
then a compact open subgroup of G: As G acts transitively on G; we may identify the

discrete spaces G=H and G: The same will be done with the orbit space GH :¼
fHðvÞ : vAGg and the double coset space G==H :¼ fHgH : gAGg: Moreover, as G is

infinite and distance-transitive, we may identify G==HCGH with the set N0 of all

nonnegative integers by identifying the orbit HðvÞ with dðv; eÞAN0: If oHAM1ðGÞ
denotes the normalized Haar measure of H; the space

MbðGjjHÞ :¼ fmAMbðGÞ :oH *m*oH ¼ mg

of all H-biinvariant bounded signed measures on G is a Banach-*-subalgebra of
MbðGÞ with the convolution as product and the total variation norm as norm.
MbðGjjHÞ is isometrically isomorphic with the space MbðG==HÞCMbðN0Þ of all
bounded signed measures on G==HCN0: Via this isomorphism, MbðN0Þ receives a
canonical Banach-*-algebra structure with a convolution which admits almost all
properties of a group convolution and which is probability preserving. More
precisely, ðN0; *Þ is a discrete hypergroup in the sense of C.F. Dunkl, R. Jewett, and
R. Spector; for details see the monograph [BH]. The convolution on MbðN0Þ was
computed explicitly in [V1] by counting vertices on G and is determined uniquely as
the bilinear, weakly continuous extension of the convolution of point measures with

dm *dn ¼
Xmþn

k¼jm�nj
gm;n;kdkAM1ðN0Þ ð1:1Þ

for m; nAN0 with

gm;n;mþn ¼ a � 1

a
40; gm;n;jm�nj ¼

1

aða � 1Þm3n�1ðb � 1Þm3n
40;

gm;n;jm�njþ2kþ1 ¼
b � 2

aða � 1Þm3n�k�1ðb � 1Þm3n�k
X0

for k ¼ 0;y;m4n � 1; and, finally, for k ¼ 0;y;m4n � 2;

gm;n;jm�njþ2kþ2 ¼
a � 2

aða � 1Þm3n�k�1ðb � 1Þm3n�k�1
X0:
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The Haar measure on the hypergroup ðN0; *Þ is the image of the counting measure

on G under the canonical projection p : G/GHCN0; counting (see [V1]) thus shows
that the Haar weights are given by

h
ða;bÞ
0 :¼ 1; hða;bÞ

n ¼ aða � 1Þn�1ðb � 1Þn ðnX1Þ: ð1:2Þ
Using

gn;1;nþ1 ¼
a � 1

a
; gn;1;n ¼ b � 2

aðb � 1Þ; gn;1;n�1 ¼
1

aðb � 1Þ

we now define a sequence of orthogonal polynomials ðPða;bÞ
n ÞnX0 by

P
ða;bÞ
0 :¼ 1; P

ða;bÞ
1 ðxÞ :¼ 2

a

ffiffiffiffiffiffiffiffiffiffiffi
a � 1

b � 1

r
x þ b � 2

aðb � 1Þ
and the three-term-recurrence relation

P
ða;bÞ
1 Pða;bÞ

n ¼ 1

aðb � 1Þ P
ða;bÞ
n�1 þ b � 2

aðb � 1Þ Pða;bÞ
n þ a � 1

a
P
ða;bÞ
nþ1 ðnX1Þ: ð1:3Þ

By induction we then obtain

Pða;bÞ
m Pða;bÞ

n ¼
Xmþn

k¼m�n

gm;n;kP
ða;bÞ
k ðm; nX0Þ: ð1:4Þ

Notice that the choice of P
ða;bÞ
1 above is in principle arbitrary. Our choice is

motivated by the fact that precisely in this case the P
ða;bÞ
n are orthogonal with respect

to a measure with support ½�1; 1
 except for possible singular points; see below. We
also notice that for all indices a; bAR with a; bX2; the formulas above remain correct

and Eq. (1.1) defines a commutative polynomial hypergroup K ða;bÞ on N0: We
therefore assume from now on that a; bAR with a; bX2 holds. For details on
polynomial hypergroups we refer to [BH,La].

1.2. The orthogonal polynomials

We next discuss some properties of the P
ða;bÞ
n : The simple three-term-recurrence

(1.3) allows to compute the P
ða;bÞ
n explicitly. In fact, for zAC\f0;71g we obtain

Pða;bÞ
n

z þ z�1

2

� �
¼ cðzÞzn þ cðz�1Þz�n

ðða � 1Þðb � 1ÞÞn=2
ð1:5Þ

with

cðzÞ :¼ ða � 1Þz � z�1 þ ðb � 2Þða � 1Þ1=2ðb � 1Þ�1=2

aðz � z�1Þ : ð1:6Þ

We note that in particular for

s0 :¼ s
ða;bÞ
0 :¼ 2 � a � b

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p ; s1 :¼ s
ða;bÞ
1 :¼ ab � a � b þ 2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p ð1:7Þ
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we have

Pða;bÞ
n ðs1Þ ¼ 1; Pða;bÞ

n ðs0Þ ¼ ð1 � bÞ�n ðnX0Þ: ð1:8Þ
A comparison of (1.5) with the Tchebychev polynomials

Unðcos tÞ ¼ sinðn þ 1Þt
sin t

of the second kind now leads to

Pða;bÞ
n ðxÞ ¼ a � 1

aðða � 1Þðb � 1ÞÞn=2

� UnðxÞ þ
b � 2

ðða � 1Þðb � 1ÞÞ1=2
Un�1ðxÞ �

1

a � 1
Un�2ðxÞ

 !

for xAC (with U�1 ¼ U�2 :¼ 0). The P
ða;bÞ
n thus fit into the Askey–Wilson scheme

(see [AW, pp. 26–28]) and are sometimes called Bernstein or Cartier polynomials.
The orthogonality relations in [AW] imply that the normalized orthogonality

measure r ¼ rða;bÞAM1ðRÞ is

drða;bÞðxÞ ¼ wða;bÞðxÞ dxj½�1;1
 for aXbX2 ð1:9Þ

and

drða;bÞðxÞ ¼ wða;bÞðxÞ dxj½�1;1
 þ
b � a

b
dds0 for b4aX2 ð1:10Þ

with

wða;bÞðxÞ :¼ a

2p
ð1 � x2Þ1=2

ðs1 � xÞðx � s0Þ
:

For a; bAR with a; bX2; the numbers s0; s1 satisfy

�s1ps0p� 1o1ps1:

Moreover, Eq. (1.5) yields that the dual space

K̂ða;bÞCfxAR : ðPða;bÞ
n ðxÞÞnX0 is boundedg

of K ða;bÞ is equal to ½�s1; s1
: This interval obviously contains the support S :¼
supp rða;bÞ of the orthogonality measure.

1.1. Remark. For pX1 denote the space of Lp-functions on N0 w.r.t. the Haar
measure with weights (1.2) by LpðN0Þ: (1.2) and (1.8) show that for b4a; the

character a on K ða;bÞ corresponding to s0Asupp r satisfies aALpðN0Þ precisely for

p41 þ lnða þ 1Þ=lnðb þ 1Þ; in particular, for b4a; we have aAL2ðN0Þ:

In the sequel we investigate dual convolutions on S and K̂ða;bÞ: For integers a; bX2;
the existence of a dual probability preserving convolution on S follows from general
(hyper)group-theoretic principles; see Theorem 2.4(2) of [V2] or Section 13 of [J].

Such a argument is not available for characters in K̂ða;bÞ
\S and clearly also not for
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arbitrary a; bAR; a; bX2: On the other hand, the existence of a dual probability

preserving convolution on K̂ða;bÞ was established for b ¼ 2 and aAN with aX2 (i.e.,
in the case of homogeneous trees) by Arnaud [A] and Letac [Le] by using positive
definite functions on trees. Moreover, for b ¼ 2 and aAR with aX2; it was shown in

[CKS,Le] that there exists a dual positive convolution on K̂ða;bÞ ¼ ½�s1; s1
; which is
computed explicitly there. We now extend these results of [A,CKS,Le] to the case
bX2: We first restrict our attention to a; bAN and the infinite distance-transitive
graphs.

2. Existence of positive product and transfer formulas

Let a; bAN with a; bX2; and let G ¼ Gða; bÞ be the associated infinite distance-
transitive graph. In the following we sometimes suppress the superscript ða; bÞ:
We first investigate which hypergroup characters belong to positive definite
functions on the graph. For this we prove the following extension of a result
of [A].

2.1. Proposition. Let bX2 be an integer, aAR with aX2; and G a finite graph formed

by N copies of the complete graph Cb in a tree-like way. Then, for all xAC;

detðPða;bÞ
dðs;tÞðxÞÞs;tAG ¼ 2Nbðs1 � xÞNðb�1Þðx � s0ÞN

aðb�1ÞNþ1ðb � 1ÞNðb=2�1Þða � 1ÞNb=2

Y
sAG

ða � vðsÞÞ;

where vðsÞ denotes the number of copies of the graph Cb to which sAG belongs.

The proof is based on some known facts about determinants; we include proofs
for sake of completeness. Denote the n � m-matrix with all entries equal to 1 by En;m:
Moreover, for c; dAC; let Mnðc; dÞ be the n � n-matrix with the entry c in the
diagonal and d otherwise.

2.2. Lemma. Let c; d; eAC and m; nAN:

(1) det Mnðc; dÞ ¼ ðc � dÞn�1ðc þ ðn � 1ÞdÞ:
(2) The mn � mn-block matrix

Gn;mðc; d; eÞ :¼

Mnðc; dÞ e � En;n e � En;n y e � En;n

e � En;n Mnðc; dÞ e � En;n y e � En;n

y

e � En;n e � En;n e � En;n y Mnðc; dÞ

0
BBB@

1
CCCA

M. Voit / Journal of Approximation Theory 120 (2003) 337–354 341



satisfies

det Gn;mðc; d; eÞ ¼ ðc � dÞmðn�1Þðc þ ðn � 1Þd � neÞm�1

� ðc þ ðn � 1Þd þ nðm � 1ÞeÞ:

(3) If c4d; det Gn;m�1ðc; d; eÞ40; and det Gn;mðc; d; eÞ40; then for l ¼ 1;y; n; the

block matrices

Gn;m;lðc; d; eÞ :¼
Gn;m�1ðc; d; eÞ e � Enðm�1Þ;l

e � El;nðm�1Þ Mlðc; dÞ

 !

also satisfy det Gn;m;lðc; d; eÞ40:

Proof. (1) Subtract the first n � 1 rows d=ððn � 2Þd þ cÞ-times from the last one of
Mnðc; dÞ: This yields

det Mnðc; dÞ ¼ det Mn�1ðc; dÞ c � ðn � 1Þd2

ðn � 2Þd þ c

� �
:

Induction now leads to part (1).
(2) Subtract the first ðm � 1Þn rows e

ðcþðn�1Þdþðm�2ÞneÞ-times from the last n rows of

Gn;mðc; d; eÞ: Then the matrix consisting of the last n rows is given by

ð0; 0;y; 0;Mnðc̃; d̃ÞÞ with c̃ :¼ c � h; d̃ :¼ d � h; and

h :¼ e2ðm � 1Þn
c þ ðn � 1Þd þ ðm � 2Þne

:

Therefore,

det Gn;mðc; d; eÞ ¼ det Gn;m�1ðc; d; eÞ det Mnðc̃; d̃Þ:

The claim now follows by induction from part (1).
(3) The proof of part (2) also implies that

det Gn;m;lðc; d; eÞ ¼ det Gn;m�1ðc; d; eÞ det Mlðc̃; d̃Þ

with

det Mlðc̃; d̃Þ ¼ ðc � dÞl�1
c þ ðl � 1Þd � lðm � 1Þne2

c þ ðn � 1Þd þ ðm � 2Þne

� �
:

As the ½y
-term is positive for l ¼ 0 and l ¼ n by the assumption and linear in l; the
claim follows. &

Proof of Proposition 2.1. We check the determinant formula by induction on the
number of copies of the graph Cb which form the graph G: We also use the notations

of the preceding lemma and suppress the superscripts and the argument in P
ða;bÞ
n ðxÞ:
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If G consists of one copy of Cb; then ðPdðs;tÞÞs;tAG ¼ Mbð1;P1Þ; and Lemma 2.2(1)

implies

detðPdðs;tÞÞs;tAG ¼ ð1 � P1Þb�1ð1 þ ðb � 1ÞP1Þ; ð2:1Þ

which readily proves the claim for N ¼ 1:
Now assume that the determinant formula is correct for some graph G formed by

a certain positive finite number of copies of the graph Cb: Now consider some vertex
kAG which belongs to only one subgraph of G isomorphic with Cb (note that such a
vertex exists!). Denote its neighbors by k1;y; kb�1: We now extend G at k by r40

new copies of the graph Cb in a tree-like way, and obtain a new graph, say *G: The

new vertices will be labelled by Ni
j with 1pipr; 1pjpb � 1; i.e., Ni

j is the jth vertex

of the ith new graph isomorphic with Cb: The matrix H :¼ ðPdðs;tÞÞs;tA *G then may be

written as H ¼ ðH1;H2Þ with

H1 ¼

* R Pdðk;sÞ � EjGj�b;1

* Mb�1ð1;P1ðxÞÞ P1 � Eb�1;1

* P1 � E1;b�1 1

* P2 � Eb�1;b�1 P1 � Eb�1;1

* P2 � Eb�1;b�1 P1 � Eb�1;1

y y y

* P2 � Eb�1;b�1 P1 � Eb�1;1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

and where H2 is given by

Pdðk;sÞþ1 � EjGj�b;b�1 y y Pdðk;sÞþ1 � EjGj�b;b�1

P2 � Eb�1;b�1 y y P2 � Eb�1;b�1

P1 � E1;b�1 y y P1 � E1;b�1

Mb�1ð1;P1Þ P2 � Eb�1;b�1 y P2 � Eb�1;b�1

P2 � Eb�1;b�1 Mb�1ð1;P1Þ y P2 � Eb�1;b�1

y y y y

P2 � Eb�1;b�1 P2 � Eb�1;b�1 y Mb�1ð1;P1Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

Here * denotes parts of no interest, and all rows of the matrix R contain the entry
Pdðk;sÞ exactly b � 2-times and the entry Pdðk;sÞ�1 once; here as well as in the matrices

above, s stands for some vertex in G with dðk; sÞX2:
Now subtract the column belonging to the vertex k in the H (i.e., the third column

of H or H1) from each of the last rðb � 1Þ columns of H (and H2; respectively)
exactly a

a�1
P1-times and add the columns belonging to the vertices k1;y; kq�1 (i.e.,

the columns in the second column of H1) to these columns exactly 1
ða�1Þðb�1Þ-times.

The three-term-recurrence (1.3) for the Pn ensures that the entries of the modified
columns belonging to rows sAG\fkg are equal to 0. Moreover, the entries of the
modified columns belonging to row k also disappear. Using the remaining entries in
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the modified columns, we conclude that

detðPdðs;tÞÞs;tA *G ¼ detðPdðs;tÞÞs;tAG detðGb�1;rðc; d; eÞÞ ð2:2Þ

with Gb�1;rðc; d; eÞ as in Lemma 2.2 and

c :¼ 1 þ 1

a � 1
P2 �

a

a � 1
P2

1; d :¼ c þ P1 � 1; e :¼ c þ P2 � 1:

Therefore, by Lemma 2.2(2),

detðGb�1;rðc; d; eÞÞ ¼ ð1 � P1Þrðb�2Þððb � 2ÞðP1 � 1Þ � ðb � 1ÞðP2 � 1ÞÞr�1

� ððb � 1Þrc þ ðb � 2ÞðP1 � 1Þ þ ðb � 1Þðr � 1ÞðP2 � 1ÞÞ:
A straightforward computation now shows that

1 � P1 ¼
2
ffiffiffiffiffiffiffiffiffiffiffi
a � 1

p

a
ffiffiffiffiffiffiffiffiffiffiffi
b � 1

p ðs1 � xÞ;

1 þ ðb � 1ÞP1 ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p
a

ðx � s0Þ;

ðb � 2ÞðP1 � 1Þ � ðb � 1ÞðP2 � 1Þ ¼ 4

a
ðs1 � xÞðx � s0Þ

and

ðb � 1Þrc þ ðb � 2ÞðP1 � 1Þ þ ðb � 1Þðr � 1ÞðP2 � 1Þ

¼ 4ðab � a � b þ 2Þða � r � 1Þ
aða � 1Þ ðs1 � xÞðx � s0Þ:

These formulas, Eq. (2.2) and induction on the number of vertices belonging to at
least two copies of the complete graph Cb now imply

detðPdðs;tÞÞs;tAG ¼ 2Nbðs1 � xÞNðb�1Þðx � s0ÞNða � 1ÞN=2

aðb�1ÞNþ1ðb � 1ÞNðb=2�1Þða � 1Þ
P

sAG
vðsÞ

Y
sAG

ða � vðsÞÞ:

The proposition now follows from
P

sAG vðsÞ ¼ bN: &

Proposition 2.1 can be used to decide which characters on the hypergroup

N0CGða; bÞH may be regarded as a positive definite kernel on Gða; bÞ or as a positive
definite function on the group G of automorphisms on Gða; bÞ: For this we recall that
a kernel k : Gða; bÞ � Gða; bÞ-C is called positive definite if for all nAN; c1;y; cnAC

and v1;y; vnAG we haveXn

i;j¼1

ci %cjkðvi; vjÞX0:

Proposition 2.1 yields:

2.3. Theorem. Let a; bX2 integers, and let G be a locally compact group acting on

Gða; bÞ in a distance-transitive way. Denote the stabilizer subgroup of a fixed vertex by
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H and identify G==H with N0 in the obvious way. Then the following statements are

equivalent for x; ãAR with ãX2:

(1) Either xA½sðã;bÞ0 ; s
ðã;bÞ
1 
 and ãXa or xAfs

ðã;bÞ
0 ; s

ðã;bÞ
1 g and ãX2;

(2) ðv1; v2Þ/P
ðã;bÞ
dðv1;v2ÞðxÞ is a positive definite kernel on Gða; bÞ;

(3) the mapping g/P
ðã;bÞ
dðgH;eÞðxÞ is a positive definite function on G.

Proof. Using the identification G=H ¼ G; we find for all vertices v1; v2AG
representatives g1; g2AG with vi ¼ giH; and we have

dðg�1
1 g2H; eÞ ¼ dðg2H; g1ðeÞÞ ¼ dðg2H; g1HÞ:

This observation readily implies equivalence (2)3(3).

In order to check (1) ) (2), we first consider xA
sðã;bÞ0 ; s
ðã;bÞ
1 ½ and ã4a: Take finitely

many arbitrary vertices in Gða; bÞ; and let T be some finite connected subgraph of
Gða; bÞ consisting of graphs of type Cb and containing these vertices. Enumerate the
elements of T by s1;y; sm such that for each kAN0 with b þ kðb � 1Þpm; the
vertices s1;y; sbþkðb�1Þ form a connected subgraph Tk consisting of graphs of type

Cb: Then, by Proposition 2.1, detðPðã;bÞ
dðsi ;sjÞðxÞÞi;j¼1;y;bþkðb�1Þ40 for all these k:

Moreover, Eq. (2.2) in the proof of Proposition 2.1 and Lemma 2.2(3) imply that

detðPðã;bÞ
dðsi ;sjÞðxÞÞi;j¼1;y;r40 ð2:3Þ

for all r ¼ 1;y;m: This implies part (2) for xA
sðã;bÞ0 ; s
ðã;bÞ
1 ½ and ã4a: The case

xA½sðã;bÞ0 ; s
ðã;bÞ
1 
 and ãXa now follows by taking limits. Moreover, as P

ðã;bÞ
n ðsðã;bÞ1 Þ and

P
ðã;bÞ
n ðsðã;bÞ0 Þ are independent of ã by (1.8), part (2) also holds for x ¼ s

ðã;bÞ
0 ; s

ðã;bÞ
1 and

any ãX2:
Now take ãX2 and xAR such that the kernel in (2) is positive definite. This in

particular implies that jPðã;bÞ
n ðxÞjp1 for all nX0; i.e., we obtain xA½�s

ðã;bÞ
1 ; s

ðã;bÞ
1 
:

Moreover, the case xos
ðã;bÞ
0 can be obviously excluded by using Proposition 2.1 for

N ¼ 1: For xA
sðã;bÞ0 ; s
ðã;bÞ
1 ½; the case ãoa can be also excluded by Proposition 2.1.

This completes the proof. &

2.4. Remark. For ã ¼ a; Theorem 2.3 may be regarded as a discrete analog of well-
known results on positive definite functions on the noncompact symmetric spaces of
rank one and the associated Jacobi functions; see [FK, p. 265].

Theorem 2.3, the fact that products of positive definite functions on G are again
positive definite, the fact that H-biinvariant positive definite functions on G may be
regarded as positive definite functions on the hypergroup N0; and the Bochner
theorem on commutative hypergroups (see [J]) now lead to the following result:
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2.5. Corollary. Let a; bX2 be integers and x; yA½sða;bÞ0 ; s
ða;bÞ
1 
: Then there exists a

unique probability measure mx;yAM1ð½�s
ða;bÞ
1 ; s

ða;bÞ
1 
Þ with

Pða;bÞ
n ðxÞ � Pða;bÞ

n ðyÞ ¼
Z s

ða;bÞ
1

�s
ða;bÞ
1

Pða;bÞ
n ðzÞ dmx;yðzÞ for all nAN0:

The following result follows by the same reasons:

2.6. Corollary. Let a; bX2 be integers and ãAR with ãXa: Then for each

xA½sðã;bÞ0 ; s
ðã;bÞ
1 
 there exists a unique probability measure mxAM1ð½�s

ða;bÞ
1 ; s

ða;bÞ
1 
Þ with

Pðã;bÞ
n ðxÞ ¼

Z s
ða;bÞ
1

�s
ða;bÞ
1

Pða;bÞ
n ðzÞ dmxðzÞ for all nAN0:

For b ¼ 2; the measures mx;y and mx above were computed explicitly by Letac [Le];

he even observed that in fact both types of measures exist for all real ãXaX2 with
b ¼ 2: In the next section we extend the product formula of [Le] to the case bX2; bAR:

3. The explicit product formula

Let a; bAR with a; bX2: As the trivial case a ¼ b ¼ 2 (which leads to the
Tchebychev polynomials of the first kind) has to be treated separately, we assume

from now on a þ b44: We now use the Joukowski transform z/xðzÞ :¼ ðz þ z�1Þ=2
whose inverse transform is given by x/z7ðxÞ :¼ x7

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
where the two

numbers z7ðxÞ satisfy z�ðxÞ � zþðxÞ ¼ 1: In the following, it will be convenient to
work both with the x- and the z-variables; we agree that from now on xi always

corresponds to zi (iAN) where in all formulas the choice of zi or z�1
i does not matter

by symmetry. As a preparation for the kernel appearing in the product formula, we
need the following result which extends Proposition 2.1 of [CKS]; see also [RV]:

3.1. Lemma. Let z1; z2; z3AC\f0g satisfying one of the following two conditions:

(1) jze11 ze22 ze33 jo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p
for all e1; e2; e3 ¼ 71;

(2) z3 ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
a � 1

p
=
ffiffiffiffiffiffiffiffiffiffiffi
b � 1

p
and jze11 ze22 job � 1 for all e1; e2 ¼ 71:

Then for xi :¼ ðzi þ z�1
i Þ=2 (i ¼ 1; 2; 3), the seriesXN

n¼0

hða;bÞ
n Pða;bÞ

n ðx1ÞPða;bÞ
n ðx2ÞPða;bÞ

n ðx3Þ ð3:1Þ

converges and is equal to

K ða;bÞðx1; x2; x3Þ

:¼ Rða;bÞðx1; x2; x3Þ
Q3

i¼1 ðab � a � b þ 2 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p
xiÞ

a2ða � 1Þðb � 1Þ
Q

e1;e2;e3¼71ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p
� ze11 ze22 ze33 Þ

ð3:2Þ
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with

Rða;bÞðx1; x2; x3Þ :¼ða � 2Þ
Y3
i¼1

ðab � a � b þ 2 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p
xiÞ

þ ðb � 2Þ ab � a � b þ 2 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p X3

i¼1

xi

 !

� a2 � a � 1 þ ðb � 1Þð�a3 þ 4a2 � 4a þ 1Þ
�

þ 2ða � 1Þ3=2ðb � 1Þ1=2
X3

i¼1

xi

!
:

Proof. Assume first that zia71 for all i: In this case, (1.5) and (1.7) show that (3.1)
may be written as a sum of eight (or four) geometric sums which converge under the
assumptions of the lemma. In particular, the expression in (3.1) is equal to

1 þ a

ða � 1Þ
X

e1;e2;e3¼71

cðze11 Þcðz
e2
2 Þcðz

e3
3 Þ � ze11 ze22 ze33ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða � 1Þðb � 1Þ
p

� ze11 ze22 ze33
ð3:3Þ

The equality of the expressions in (3.3) and (3.2) finally follows by a tedious, but
straightforward computation (which was verified by the author also by using
MAPLE).

Assume now that z1 ¼ 71 and z2; z3a71; and that z1; z2; z3 satisfy one of the
conditions of the lemma. Then for any zAC with jzj ¼ 1 and za71; the lemma
holds for ðz; z1; z2Þ: As for given z2; z3; the eight geometric series above converge
uniformly in zAT\f71g; and as the partial sums as well as the right-hand side of
(3.2) are continuous in zAT; it follows readily that the lemma also holds for
ð71; z1; z2Þ: The remaining cases follow in the same way. &

3.2. Lemma. The function K ða;bÞ defined in Lemma 3.1 satisfies

K ða;bÞðx1; x2; x3ÞX0

for all x1; x2A½s0; s1
 and x3Asupp rða;bÞ for which K ða;bÞ is nonsingular.

Proof. We first note that Eq. (3.2) yields

K ða;bÞðs0; x1; x2Þ

¼ ða � 1Þbðb � 2Þ
aðb � 1Þ2

Q2
i¼1ðð1 � 1

zi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða�1Þðb�1Þ

p Þð1 � ziffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða�1Þðb�1Þ

p ÞÞ
Q

e1;e2¼71ð1 þ z
e1
1

z
e2
2

b�1
Þ

: ð3:4Þ

In particular, K ða;bÞðs0; x1; x2ÞX0 holds for x1; x2A½s0; s1
: It therefore suffices to

check that K ða;bÞðx1; x2; x3ÞX0 for x1;x2A½s0; s1
 and x3A½�1; 1
: As x3A½�1; 1
 is
equivalent to z3AC with jz3j ¼ 1; it follows readily that the numerator of (3.2) is
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nonnegative for x1; x2A½s0; s1
 and x3A½�1; 1
: We therefore have to prove that

Rða;bÞðx1; x2; x3ÞX0 for x1; x2A½s0; s1
; x3A½�1; 1
: ð3:5Þ

This is obvious for b ¼ 2; but the proof is more involved for b42: All computations
below were checked by hand and in addition by using MAPLE. We assume b42
from now on and write

a ¼ q2 þ 1; b ¼ r2 þ 1 with qX1; r41:

The function R is a polynomial in x1 of degree 2 with a positive leading coefficient. A
short computation shows that the minimum of R depending on x1 is attained at

x1m :¼ x1mðx2; x3Þ ¼
�1

4q3rðr � 1Þðr þ 1Þ
� ð2qrðq2 þ 1Þðq2r2 � 1Þðx2 þ x3Þ þ 4q2r2ðq2 � 1Þx2x3

� q2 þ q4r2 � q2r2 þ q4r4 � r2 þ r4q2 � q4 þ q6 r2Þ:

Inspection shows that x1m is linear in x2 with a negative leading coefficient for all
x3A½s0; s1
: By symmetry, we conclude that x1m; as a function of x2; x3A½s0; s1
; is
decreasing in these variables. We now discuss three cases depending on the location
of x1m:

Case 1: x1mps0: As K ða;bÞðs0; x2; x3ÞX0 by the considerations above, (3.5) is
obvious in this case.

Case 2: x1mXs1: In this case it suffices to check Rðs1; x2; x3ÞX0 for x2; x3A½s0; s1

with x1mðx2; x3ÞXs1: By symmetry, this means to prove Rðx1; x2; s1ÞX0 for
x1; x2A½s0; s1
 with x1mðx1; x2ÞXs1: As the equation x1mðx; s1Þ ¼ s0 admits the
unique solution

xn :¼ � ðq2r2 þ 1Þðq4r2 þ q4 þ 2q2r2 � 2q2 � r2 � 1Þ
4qrðq4r2 � 1Þ

and as a straightforward computation yields xnps0; we conclude that for x2A½s0; s1

we have x2Xxn; and hence, by monotonicity, x1mðx2; s1Þps0: It therefore suffices to
check Rðs0; x2; s1ÞX0 which is a consequence Case 1. This completes the proof of
(3.5) in this case.

Case 3: x1mA½s0; s1
: In this case we have to prove

Rðx1mðx2; x3Þ; x2; x3ÞX0

for certain x2; x3: To describe the set of all these points, we notice that the linear
equation x1mðs0;x3Þ ¼ s0 has the unique solution

x̂3 :¼
qðr2 þ q2Þ
rðq4 þ 1Þ :

It can be easily checked that x̂3A½0; s1
 for q; rX1: As x2Xs0; we obtain from the
monotonicity of x1m that we may restrict our attention to x2A½s0; s1
 and
x3A½�1;minf1; x̂3g
: To check Rðx1mðx2; x3Þ; x2; x3ÞX0 in this case, we observe that
Rðx1mðx2; x3Þ; x2; x3Þ is quadratic in x2: A straightforward computation shows that
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the extreme value of this function (depending on x3) is attained at

x2eðx3Þ :¼ � ðq2 þ 1Þðq2r2 � 1Þðq2 þ 2qrx3 þ r2Þ
2qrð2q3rx3 � 2qrx3 � 1 � 3q2 þ 3q2r2 þ q4r2Þ:

On the other hand, the unique solution of the equation x1mðx2; x3Þ ¼ s0 in x2 is given
by

x2nðx3Þ :¼ �

2x3ðq5r3 þ q3r3 � q3r � qrÞ
þ q6r2 þ q4r4 � q4r2 þ q4 � r4q2 þ q2r2 � q2 � r2

2qrð�q2 þ q4r2 � 1 þ q2r2 þ 2q3rx3 � 2qrx3Þ
:

Hence, x2nðx3Þ � x2eðx3Þ is given by

2q2ðr2 � 1Þ2ðr2q þ q3 � x3r � q4rx3Þ
�q2 þ q4r2 � 1 þ q2r2 þ 2q3rx3 � 2qrx3

� 1

�3q2 þ q4r2 � 1 þ 3q2r2 þ 2q3rx3 � 2qrx3
:

It can be readily checked that the denominator of this expression is positive for
x3Xs0: Moreover, its numerator is nonnegative iff x3px̂3 holds. Furthermore, as

x2eðx3Þ � s0 ¼
ðr2 � 1Þðr2q þ q3 � rx3 � q4rx3Þ

rð2q3rx3 � 2qrx3 � 1 � 3q2 þ 3q2r2 þ q4r2Þ

can be handled in the same way, we conclude that x2nðx3ÞXx2eðx3ÞXs0 for
x3A½s0; x̂3
; and that we have to prove

R̃ðx3Þ :¼ Rðx1mðx2eðx3Þ; x3Þ; x2eðx3Þ; x3ÞX0

for x3A½�1;minf1; x̂3g
: A straightforward computation shows that

R̃ðx3Þ ¼
ðq2 � 1Þðr2 � 1ÞZðx3Þ

2qrx3ðq2 � 1Þ � 1 � 3q2 þ 3q2r2 þ q4r2
ð3:6Þ

with

Zðx3Þ :¼ 8q5r3x3
3 þ 4ð�q6r4 þ q4r4 � q8r4 þ q6r2 � q2r2 � q4r2Þx2

3

þ ð�2q7r5 � 4q5r3 � 2q3rÞx3 þ r6q4 þ 4q6r4 � 4q4r4 þ q10r4

� 2r4q2 þ 4q8r4 � 4q6r2 þ r2 þ 4q4r2 � 2q8r2 þ 4q2r2 þ q6:

A further straightforward computation now yields that the cubic polynomial Z with
positive leading coefficient has two local extrema on R where the local minimum is
attained at

m :¼ 1

6q3r
ð�q2r2 þ q6r2 þ q4r2 � q4 þ 4 þ 4q2

þ ð1 þ 2q2 þ 2q4 � 2q2r2 þ 12q6r2 � 2q6r4 þ q4r4 � 2q6

þ 2q8r4 þ 2q10r4 þ q8 � 2q10r2 þ q12r4Þ1=2Þ:
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A straightforward computation shows that mX1 holds for q; rX1; i.e., the local

minimum m is on the right-hand side of the interval ½�1; 1
: As R̃ðs0ÞX0 by the

considerations above, and as Zð1Þ ¼ ðq3 � rÞ2ðq2r2 � 1Þ2X0 and hence R̃ð1ÞX0; we

conclude that R̃X0 on ½�1; 1
: This completes the proof. &

3.3. Remark. For a ¼ 2 or b ¼ 2; we have s0 ¼ �s1; i.e., Lemma 3.2 implies that the

kernel K ða;bÞ is nonnegative on K̂ða;bÞ � K̂ða;bÞ � supp r (except for possible poles). On

the other hand, for a; b42 it may occur for certain points x1A½�s1; s0½CK̂ða;bÞ
\supp r

and x2; x3A½�1; 1
Csupp r that K ða;bÞðx1; x2;x3Þo0 holds. Hence, by the arguments
in the proof of Theorem 3.4 below, there exists usually no dual positive convolution

on the complete dual space K̂ða;bÞ ¼ ½�s1; s1
: Here is a concrete example: for a ¼ 5

and b ¼ 17 we have �s1 ¼ �65=16; s0 ¼ �5=4; and K ð5;17Þðx; 0; 0Þo0 for

xA½�s1;�5=2½a|:

Motivated by Corollary 2.5, we now construct an explicit product formula for the

polynomials Pm ¼ P
ða;bÞ
m on ½s0; s1
 for all a; bAR with a; bX2 and a þ b44:

3.4. Theorem. Let z1; z2AC\f0g and xi :¼ ðzi þ z�1
i Þ=2 for i ¼ 1; 2: Then for all mAN0

the following product formulas hold:

(1) If jze11 ze22 jo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p
for all e1; e2 ¼ 71; then

Pmðx1ÞPmðx2Þ ¼
Z

supp r
PmðxÞKðx1; x2; xÞ drðxÞ:

(2) If z1; z2AR with

jz1z2j4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p
4maxfjz�1

1 z2j; jz1z�1
2 j; jz�1

1 z�1
2 jg;

then

Pmðx1Þ � Pmðx2Þ ¼ A � Pm

z þ z�1

2

� �
þ
Z

supp r
PmðxÞ � Kðx1; x2; xÞ drðxÞ

with

z :¼ z1z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p and A :¼ cðz1Þcðz2Þ
cðzÞ :

(3) Let z1; z2AR with jz1j; jz2j41: If either z1z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p
; or if aab and

z1z2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p
; then the product formula of part (1) also holds.

(4) For all x1AC; Pmðs1Þ � Pmðx1Þ ¼ Pmðx1Þ:
(5) If a4b ¼ 2; then Pmð�s1Þ � Pmðx1Þ ¼ Pmð�x1Þ for all x1AC:
(6) If b4a ¼ 2; then s0 ¼ �s1 and for Pmð�s1Þ � Pmðx1Þ the product formula of part

(1) holds.
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In particular, for all x; yA½s0; s1
 there exists a unique probability measure

mx;yAM1ð½s0; s1
Þ with

PmðxÞ � PmðyÞ ¼
Z s1

s0

PmðzÞ dmx;yðzÞ for all mAN0:

Proof. We first check that cases (1)–(6) cover all possible product formulas for
x; yA½s0; s1
: In fact, the only possibilities not covered by the main cases (1) and (2)
are the cases

jz1z2j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p
; z1 ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p
or

z2 ¼ 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p
:

If z1; z2a7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p
; then we automatically land up with case (3) (notice that

for a ¼ b we have s0 ¼ �1; i.e., for x1; x2A½s0; s1
 the case z1z2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p
is

automatically excluded). Assume now that z1 ¼ 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p
with z2AT holds

(notice that the last case z2 ¼ 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p
can be handled in the same way).

Then the case with a plus sign is case (4), and as �s1 ¼ s0 holds precisely for a ¼ 2 or
b ¼ 2; the relevant cases of a minus sign are covered by (5) and (6). The
nonnegativity of the product formulas now follows immediately from the
nonnegativity of K in the relevant regions; see Lemma 3.2. The fact that
the measures there are probabilities finally follows from P0 ¼ 1:

We next check the product formulas. Cases (4) and (5) are clear; we just notice that

for b ¼ 2 we have Pmð�xÞ ¼ ð�1Þm
PmðxÞ:

To prove part (1), we first notice that the isolated point s0 in supp r appears

precisely for b4aX2; and that in this case b � 14
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p
holds, i.e., series

(3.1) converges for z3 :¼
ffiffiffiffiffiffiffiffiffiffiffi
a � 1

p
=
ffiffiffiffiffiffiffiffiffiffiffi
b � 1

p
and all z1; z2 satisfying the conditions of

part (1). We therefore obtain from the proof of Lemma 3.1 that in the setting of part

(1) series (3.1) converges uniformly for z3 :¼ x þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
with xAsupp rða;bÞ:

Multiplication of this series with P
ða;bÞ
m ðxÞ; integration w.r.t. rða;bÞ; and the

orthogonality of the P
ða;bÞ
n ðxÞ now yield the product formula.

Part (6) follows by the same arguments.

We next consider part (3). In this case the definition of the Lebesgue density wða;bÞ

and Eq. (3.2) show that

wða;bÞðxÞ � K ða;bÞðx̃1; x̃2; xÞ

is a continuous function in the variables ðx̃1; x̃2; xÞ for xA½�1; 1
 and ðx̃1; x̃2Þ in a
neighborhood of ðx1; x2Þ: Therefore, as the arguments for the isolated point in

s0Asupp rða;bÞ above for b4a remain available, and as the product formula was

already proved for ðx̃1; x̃2Þ whose z-values satisfy jz̃1z̃2jo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p
; the
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dominated convergence theorem ensures that the product formula of part (1) also
holds for the x1; x2 that belong to z1; z2 satisfying the conditions of part (3).

It remains to check part (2). According to the proof of Lemma 3.1, we have

Kðx1; x2; x3Þ ¼ 1 þ a

a � 1

X
e1;e2;e3¼71

cðze11 Þcðz
e2
2 Þcðz

e3
3 Þ � ze11 ze22 ze33ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða � 1Þðb � 1Þ
p

� ze11 ze22 ze33

whenever the zi satisfy ze11 ze12 ze13 a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p
for all e1; e2; e3 ¼ 71: For mAN0

let

Im :¼
Z 1

�1

PmðxÞ � Kðx1; x2; xÞ drðxÞ: ð3:7Þ

Using the representation

wðxÞ ¼ a � 1

2pa

1

jcðx þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p
Þj2 � ð1 � x2Þ1=2

of the weight function, we see that

Im ¼ rð½�1; 1
Þ � dm;0 þ
X

e1;e2¼71

cðze11 Þcðz
e2
2 Þz

e1
1 ze22

� 1

2p

Z 2p

0

eitPmðcos tÞ
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p
� ze11 ze22 eitÞcðe�itÞ

dt

" #
; ð3:8Þ

where the expressions ½y
 are equal to

Hm
e1;e2 :¼

1

2pi

I
jwj¼1

Rm
e1;e2ðwÞ dw

with

Rm
e1;e2ðwÞ :¼

Pmðwþw�1

2
Þ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p
� ze11 ze22 wÞcðw�1Þ

¼ cðwÞwm þ cðw�1Þm�m

cðw�1Þ

� �
1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p
� ze11 ze22 wÞðða � 1Þðb � 1ÞÞm=2

:

These integrals over the unit circle will be evaluated by using the residue theorem.
The integrand Rm

e1;e2 has the following relevant singularities and residues:

(a) For mX1; we have the pole 0 with residue

Res0ðRm
e1;e2Þ ¼

ðze11 ze22 Þ
m�1

ðða � 1Þðb � 1ÞÞm:

Summation over e1; e2 ¼ 71 as in Eq. (3.8) with the coefficients there shows that
the pole 0 for mX1 leads to a summand Pmðx1ÞPmðx2Þ in Im:

(b) A second pole of Rm
e1;e2 is given by

wðe1; e2Þ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p
=ðze11 ze22 Þ:
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Under the conditions of part (2), this pole is inside the unit circle precisely for
e1 ¼ e2 ¼ 1; the residue is given in this case by

Reswðe1;e2ÞðRm
e1;e2Þ ¼ � Pmððwðe1; e2Þ þ wðe1; e2Þ�1Þ=2Þ

z1z2cðwðe1; e2Þ�1Þ
:

Therefore, this pole leads to the summand �APmððz þ z�1Þ=2Þ (with A and z as
in part (2) of the theorem).

(c) A further pole appears for w satisfying cðw�1Þ ¼ 0: This holds precisely for

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þðb � 1Þ

p
; which is outside the unit circle, and for w0 :¼

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þ=ðb � 1Þ

p
; which is outside the unit circle for a4b and inside for

aob (the case a ¼ b will be considered in the end of the proof). In the first case
we have no contribution. Assume now that aob holds. In this case a
straightforward computation shows that

Resw0
ðRm

e1;e2Þ ¼
aðb � aÞ
bða � 1Þ

ð�1Þmða�1
b�1

Þðm�2Þ=2

b � 1 � ze11 ze22
:

Therefore, this pole leads to the summand

A1 :¼
X

e1;e2¼71

aðb � aÞ
bða � 1Þ

cðze11 Þcðz
e2
2 Þz

e1
1 ze22 ð�1Þmða�1

b�1
Þðm�2Þ=2

b � 1 � ze11 ze22

of Im: Moreover, a comparison with (3.3) and a straightforward computation
show

A1 ¼ � b � a

b
� Kðs0; x1; x2ÞPmðs0Þ ðb4aÞ:

Summarizing, we obtain from (a)–(c) that part (2) of the theorem holds for baa and
for z1; z2 withffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða � 1Þðb � 1Þ
p

=ðze11 ze22 Þa�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 1Þ=ðb � 1Þ

p
in which case the simple poles in (b) and (c) are equal and a double pole appears.
This latter case can be again settled by considering small perturbations of z1; z2 and
then using the already known results together with the dominated convergence
theorem applied to the integral in Eq. (3.7). The same argument also settles the case
a ¼ b by considering aob with a-b: This completes the proof of the theorem. &
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